SESTSUIPSE

A oo Yo o YA

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS

* Talk about graph
* DFS
* BFS

Running time of a graph algorithm

* the size of the input of the graph
* the number of vertices | V|
e and the number of edges | E|

* Inside asymptotic notation (such as O-notation or ©-notation)
* the symbol V denotes | V| and the symbol E denotes | E|

* the pseudocode views vertex and edge sets as attributes of a graph
* denote the vertex set of a graph G by V[G] and its edge set by E[G]

Two representations of graphs

* Either way is applicable to both directed and undirected graphs

* as adjacency lists

* provides a compact way to represent sparse graph(|E| is much less than |V|?)
e Assumed by most of the presented graph algorithms in this course

* as adjacency matrices
* the graph is dense(|E| is close to |V]?)

* or when we need to be able to tell quickly if there is an edge connecting two given
vertices

* Rather than using one word of computer memory for each matrix entry, the
adjacency matrix uses only one bit per entry.

Example of undirected graph

* Two representations of an undirected graph in next slide.
* An undirected graph G having five vertices and seven edges.

* An adjacency-list representation of G.
 consists of an array Adj of | V| lists, one for each vertexin V.

* For each u € V, the adjacency list Adj[u] contains all the vertices v such that there is an
edge (u, v) E E.

* The vertices in each adjacency list are typically stored in an arbitrary order
* The adjacency-matrix representation of G.

W= o O - O
t|[o - — © —~
N - w— (- — (-
—_— o - 0 O -
i s T~ o ¥ o

AN

4

A
1IN\
(ag' aaNINe |
A A A
N | N BN
VB I ol | B ol | L R)
A A A A A
BIERERERE
L[|l =T
A A A A A
BEEEEEER
w— (g | (o' 4 LV

Example of directed graph

* Two representations of a directed graph in next slide.
» A directed graph G having six vertices and eight edges.
* An adjacency-list representation of G.
* The adjacency-matrix representation of G.

* For both directed and undirected graphs, the adjacency-list
representation has the desirable property that the amount of
memory it requiresis O(V + E).

6
0
0

l

2 3 4

l

0

1
l

0O 0 0 O

0O 0 0 O

I

0

0

l

0

l

310 0 0 O

4

5100 0 0

610 0 0 0 0O

sl 4|/

__)2

5|/

=21/
>4 |/
—>l 6 |/

2
3
4
5
6

* the sum of the lengths of all the adjacency lists
* directed graph : |E|
 undirected graph : 2|E]|

* the amount of memory adjacency-list representation requires
« O(V +E)

* the amount of memory adjacency-matrix representation requires
- O(V?)
* independent of the number of edges in the graph

Transpose of a matrix A

* the transpose of a matrix A = (a;;) is the matrix AT = (aZ}-) given
by az} =ajl~

 the adjacency matrix A of an undirected graph is its own transpose

Weighted graphs
*letG = (V,E) be a weighted graph with weight functionw : E = R.

* The weight w(u, v) of the edge (u,v) € E is simply stored with
vertex v in u’s adjacency list

 the weight w(u, v) of the edge (u, v) € E is simply stored as the
entry in row u and column v of the adjacency matrix

fouS Cla ol (oo (Gloj az ol o gz S5 6 slo Guly (295 4z
TS Cla ol (oo Sloj az jo 1 b Cr SIS 6 slo ol (5999 a0

O ygle s yile b 81,3 Cowl jas> universal sink o5 0,5 o lp 5L 8,90 ey @
Cloals 03l L).MJLOJ
Gio 53559 42,0 5 |V =1 (295 az 0 bl ®) @
o9 0 O(V)lej ,0 @

Breadth-first search

one of the simplest algorithms for searching a graph

archetype for many important graph algorithms
* Prim
* Dijkstra,

breadth-first search systematically explores the edges of G to “discover” every
vertex that is reachable from s

It computes the distance (smallest number of edges) from s to each reachable
vertex

* produces a “breadth-first tree” with root s that contains all reachable vertices

e for any vertex v reachable from s, the path in the breadth-first tree from s to v
corresponds to a “shortest path” fromstovinG

Breadth

 the algorithm discovers all vertices at distance k from s before
discovering any vertices at distance k + 1

* To keep track of progress, breadth-first search colors each vertex
white, gray, or black.

* All vertices start out white and may later become gray and then
black.

* A vertex is discovered the first time it is encountered during the
search
 at which time it becomes nonwhite
* all vertices adjacent to black vertices have been discovered
* Gray vertices may have some adjacent white vertices

Breadth-first search

e constructs a breadth-first tree,
* initially containing only its root, which is the source vertex s.

* Whenever a white vertex v is discovered in the course of scanning the
adjacency list of an already discovered vertex u, the vertex v and the

edge (u, v) are added to the tree.

* u is the predecessor or parent of v in the breadth-first tree.
* Since a vertex is discovered at most once, it has at most one parent.

* Ancestor and descendant relationships in the breadth-first tree are defined
relative to the root s

* The breadth-first-search procedure BFS uses adjacency lists
* The color of each vertexu € V is stored in the variable color|u]

* The predecessor of u is stored in the variable m[u].
* If u has no predecessor (root and not discovered), then w[u] = NIL

* The distance from the source s to vertex u computed by the
algorithm is stored in d[u].

* The algorithm also uses a first-in, first-out queue Q to manage the
set of gray vertices

BFS(G, s)

I

O ON N B W

S \©

NN ONN R W -

o0

for each vertex u € V|G| — {s}
do color|u] < WHITE
dlu] < oo
7 |u] < NIL
color|s] < GRAY
d[s] < 0
[s] < NIL
0 <9
ENQUEUE(Q, s)
while O # (/
do u < DEQUEUE(Q)
for cach v € Adj|u]
do if color|v] = WHITE
then color[v] < GRAY
dlv] < dlu] + 1
mlv] <« u
ENQUEUE(Q, v)
color|u] < BLACK

19

Compute BFS tree?

I

i el’l

20

(@) " 0 (b) ‘ Q [wlr|
S b > @ 11

(=0 (- ‘ ‘ e
(c) "‘ 0 [r]t]x] (d) 0 [«]x]v]

' S t u r Ky "y u
® 0 [u]y]| (h) 0
3 3 3
v w X y v w X y
r s t u
v w X ¥

21

Result:

* The results of breadth-first search may depend upon the order in
which the neighbors of a given vertex are visited in line 12

* the breadth-first tree may vary, but the distances d computed by the
algorithm will not vary

Analyzing the running time of BFS

* The overhead for initialization is O(V)

* Each vertex is enqueued at most once
* and hence dequeued at most once

* The operations of enqueuing and dequeuing take O (1) time
* the total time devoted to queue operations is OV).

* Each adjacency list is scanned at most once
* sum of the lengths of all the adjacency lists is @ (E),

* The total running time of BFS is O(V + E)

* runs in time linear in the size of the adjacency-list representation

Shortest paths

» we claimed that breadth-first search finds the distance to each
reachable vertexin a graph ¢ = (V,E) from a given source vertex
s e V.

* Define the shortest-path distance 6 (s, V) from s to v as the minimum
number of edges in any path from vertex s to vertex v

* if there is no path from s to v, then 6 (s, v) = oo,

* A path of length §(s, v) from s to v is said to be a shortest path from
s tov.

Lemma 1

Let G = (V,E) be adirected or undirected graph, and lets € V be an
arbitrary vertex. Then, for any edge (u,v) € E,

o(s,v) < o(s,u) + 1.

Proof: u is reachable from s?
u is not reachable from s?

* We want to show that BFS properly computes d[v] = 6(s, v) for
each vertex v € V. We first show that d[v] bounds § (s, v) from
above

Lemma 2

Let G = (V,E) be adirected or undirected graph, and suppose that
BFS is run on G from a given source vertex s € V. Then upon
termination, for each vertex v € V, the value d|[v] computed by BFS

satisfies d[v] = §(s,v).

Proof: induction on the number of ENQUEUE operations

 basis : d[v] 2 (s, v) forall v € V (d[s] =0 = (s, s) and d[v] =o=26(s, v)
forallve Vv -{s}.)

* inductive step : ‘

Lemma 2

Proof: induction on the number of ENQUEUE operations

* inductive step :

consider a white vertex v that is discovered during the search from a
vertex u

inductive hypothesis implies that d[u] = 6(s,u)

from lemma 1 and line 15:
dlvl=dlul]+ 1 = 6(s,u)+ 1 = §(s,v)

d|v] never changes again (because never enqueued again)

* To prove that d[v] = (s, V), we must first show more precisely how
the queue Q operates during the course of BFS.

* The next lemma shows that at all times, there are at most two
distinct d values in the queue.

Lemma 3

Suppose that during the execution of BFSon a graph ¢ = (V,E), the
queue Q contains the verticesvq, v,,..., v, , where v4 is the head of Q

and v, is the tail.

Then,
d|vr]
dlv]

d|v,] + 1and
dlvisq]fori = 1,2,...,r — 1.

IN A

Proof: induction on the number of queue operations U

Lemma 3

Proof: induction on the number of queue operations

* basis : Initially, when the queue contains only s, the lemma certainly
holds.

* inductive step : we must prove that the lemma holds after both
dequeuing and enqueuing a vertex.

Corollary 4

Suppose that vertices v; and v; are enqueued during the execution of
BFS, and that v; is enqueued before v;. Then d[v;]| < d[v;] at the time
that v; is enqueued.

* Proof:
* Lemma 3
* Each vertex receives a finite d value at most once during the algorithm

Theorem 5 (Correctness of breadth-first search)

*LletG = (V,E) beadirected or undirected graph, and suppose that
BFS is run on G from a given source vertex s € V. Then, during its
execution, BFS discovers every vertex v € V that is reachable from
the source s, and upon termination, d[v] = 6(s,v) forallv € V.
Moreover, for any vertex v € s that is reachable from s, one of the
shortest paths from s to v is a shortest path from s to nt[v] followed
by the edge ([v], v).

* Proof: contradiction
* A vertex receives a d value not equal to its shortest path distance!

Breadth-first trees

V. ={v € V: mlv] = NIL} U {s}
* B = {(mlv]v) s v € Vp — {s}}

* The predecessor subgraph G, is a breadth-first tree if V, consists of
the vertices reachable from s and, for all v € V., there is a unique

simple path from s to v in G,; that is also a shortest path from s to v
inG.

Lemma 6

* When applied to a directed or undirected graph ¢ = (V,E),
procedure BFS constructs so that the predecessor subgraph G,
= (V, E;) is a breadth-first tree.

PRINT-PATH(G, s, v)
ifv=sys
then print s
else if 7[v] = NIL
then print “no path from™ s “to” v “exists”
else PRINT-PATH(G, s, m[v])
print v

NN B Wi =

37

DFS

depth-first search

* to search deeper in the graph whenever possible

* Two applications of depth-first search
» Sorting a directed acyclic graph (DAG)
* Finding the strongly connected components of a directed graph

Insight of DFS

In depth-first search,

* edges are explored out of the most recently discovered vertex v that
still has unexplored edges leaving it.

* When all of v’s edges have been explored, the search backtracks to
explore edges leaving the vertex from which v was discovered
(predecessor)

* This process continues until we have discovered all the vertices that
are reachable from the original source vertex.

* If any undiscovered vertices remain, then one of them is selected as a
new source and the search is repeated from that source.

From one vertex

DES-VISIT(u)
color[u] <= GRAY > White vertex u has just been discovered.
time < time +1
du] < time
for each v € Adj|u] > Explore edge (u, v).
do if color|v] = WHITE
then 7|v] < u
DES-VISIT(v)

color[u] <= BLACK > Blacken u; it 1s finished.
flu] < time < time +1

O OO NN B W —

41

coloring technique

* Each vertex is initially white, is when it is in the
search, and is blackened when it is finished

 This technique guarantees that each vertex ends up in exactly one
depth-first tree

timestamps

 Each vertex v has two timestamps:

* the first timestamp d[v] records when v is first discovered (and
grayed),

e and the second timestamp f [v] records when the search finishes
examining v's adjacency list (and blackens v)

* These timestamps are integers between 1 and 2 | V|

 the predecessor subgraph produced by a depth-first search may be
composed of several trees

* search may be repeated from multiple sources

Whole graph

DES(G)

for each vertex u € V|G|
do color|u| < WHITE
m[u] <= NIL
time < 0
for each vertex u € V|G|
do if color[u] = WHITE
then DES-VISIT (1)

~N NN BN

45

Example

u y W U P W
m 0'0 T
.‘. 5
A ¥ VA X y z
(a) (b)

46

47

48

49

50

51

(n)

(m)

52

Running time of DFS

DFS-VISIT(u) DFS(G)

I ('()/()I'[H] <— GRAY > White vertex u has just been discovered. I foreach vertex u € V [G]

2 time <« time +1 2 do color[u] < WHITE

3 dlu] < time 3 - mlu] < NIL

4 for each v € Adj[u] > Explore edge (i, v). 4 time < 0

5 do if ('0/01'[1,‘] — WHITE 5 for each vertex u € V[G]

6 then 7 [v] < u 6 do if color[u] = WHITE
7 DFS-VISIT(v) 7 then DFS-VISIT («)
8 color|u] < BLACK > Blacken u: 1t 1s finished.

9 flu] < time < time +1

54

Properties of depth-first search

e u =t[v] if and only if DFS-VISIT(v) was called during a search of u’s
adjacency list

* vertex v is a descendant of vertex u in the depth-first forest if and
only if v is discovered during the time in which u is gray

* |f we represent the discovery of vertex u with a left parenthesis “(u”
and represent its finishing by a right parenthesis “u)”, then the history
of discoveries and finishings makes a well-formed expression in the
sense that the parentheses are properly nested

Theorem 22.7 (Parenthesis theorem)

* In any depth-first search of a (directed or undirected) graph G = (V, E),
for any two vertices u and v, exactly one of the following three
conditions holds

* the intervals [d[u], f[u]] and [d[v], f[v]] are entirely disjoint, and neither u nor
v is a descendant of the other in the depth-first forest,

* the interval [d[u], f[u]] is contained entirely within the interval [d[v], f[v]], and
u is a descendant of v in a depth-first tree, or

* the interval [d[v], f[v]] is contained entirely within the interval [d[u], f[u]], and
v is a descendant of u in a depth-first tree.

(a)

o

w |

i 2 3 4 5 6 7 8 91011 1.21.31.41.51.6
CCOEDNwWWD) E G @
57

Nesting of descendants’ intervals

* \Vertex v is a proper descendant of vertex u in the depth-first forest for
a (directed or undirected) graph G if and only if d[u] < d[v] < f[v] <
flul].

White-path theorem

* In a depth-first forest of a (directed or undirected) graph G = (V, E),
vertex v is a descendant of vertex u if and only if at the time d[u] that
the search discovers u, vertex v can be reached from u along a path
consisting entirely of white vertices.

Classification of edges

* Tree edges are edges in the depth-first forest Gr.
* Edge (u,v)is a tree edge if v was first discovered by exploring edge (u,v) .

» Back edges are those edges (u,v)connecting a vertex u to an ancestor
v in a depth-first tree.
 Self-loops, which may occur in directed graphs, are considered to be back
edges
* Forward edges are those nontree edges (u,v)connecting a vertex u to
a descendant v in a depth-first tree

* Cross edges are all other edges. They can go between vertices in the
same depth-first tree, as long as one vertex is not an ancestor of the
other, or they can go between vertices in different depth-first trees

* adirected graph is acyclic if and only if a depth-first search yields no
“back” edges

(a)

62

* The DFS algorithm can be modified to classify edges as it encounters
them

* The key idea is that each edge (u,v) can be classified by the color of
the vertex v that is reached when the edge is first explored (except
that forward and cross edges are not distinguished):

1) WHITE indicates a tree edge
2) GRAY indicates a back edge, and

3) BLACK indicates a forward or cross edge.

it can be shown that such an edge (u,v) is a forward edge if d[u] < d[v] and a
cross edge if d[u] > d[v].

Theorem

* In a depth-first search of an undirected graph G, every edge of G is
either a tree edge or a back edge.

